## Chapter 8 <br> Similarity

## Section 1 <br> Ratio and Proportion

## GOAL 1: Computing Ratios

If $a$ and $b$ are two quantities that are measured in the same units, then the ratio of $a$ to $b$ is $\mathrm{a} / \mathrm{b}$. The ratio of $a$ to $b$ can also be written as $\mathrm{a}: \mathrm{b}$. Because a ratio is a quotient, its denominator cannot be zero.

Ratios are usually expressed in simplified form. For instance, the ratio of 6:8 is usually simplified as 3:4.

Example 1: Simplifying Ratios
$1 \mathrm{~m}=100 \mathrm{~cm}$

$$
184=12 \mathrm{in}
$$

a. $\frac{12 \mathrm{~cm}}{4 \mathrm{~m}} \rightarrow \frac{12 \mathrm{~cm}}{400 \mathrm{~cm}}$
b. $\frac{6 \mathrm{ft}}{18 \mathrm{in} .} \rightarrow \frac{72 \mathrm{~m}}{18 \mathrm{~m}}$

$$
\frac{12 \div 4}{400 \div 4} \rightarrow \frac{3}{100}
$$

$$
\frac{72 \div 6}{18 \div 6} \rightarrow \frac{12 \div 3}{3 \div 3} \rightarrow \frac{4}{1}
$$

Example 2: Using Ratios
$\rightarrow=2 l+2 w$
The perimeter of rectangle $A B C D$ is 60 centimeters. The ratio of $A B: B C$ is $3: 2$. Find the length and width of the rectangle.

$$
\begin{aligned}
& 60=2(3 x)+2(2 x) \\
& 60=10 x \\
& 6=x \\
& \ell \rightarrow 3 x \rightarrow 3(6)=18 \mathrm{~cm} \\
& \omega \rightarrow 2 x \rightarrow 2(6)=12 \mathrm{~cm}
\end{aligned}
$$

$$
\square_{A}^{D} \quad \ell=3 \times B
$$

Example 3: Using Extended Ratios

The measure of the angles in $\Delta J K L$ are in the extended ratio of 1:2:3. Find the measures of the angles.

$$
\begin{gathered}
1 x+2 x+3 x=180 \\
6 x=180 \\
x=30 \\
\angle J \rightarrow x \rightarrow 30^{\circ} \\
\angle K \rightarrow 2 x \rightarrow 2(30)=60^{\circ} \\
\angle L \rightarrow 3 x \rightarrow 3(30)=90^{\circ}
\end{gathered}
$$



## Example 4: Using Ratios

The ratios of the side lengths of $\triangle D E F$ to the corresponding side lengths of $\triangle A B C$ are $2: 1$. Find the unknown lengths.


## GOAL 2: Using Proportions

An equation that equates two ratios is a proportion. For instance, if the ratio $\frac{a}{b}$ is equal to the ratio $\frac{c}{d}$, then the following proportion can be written:


The numbers $a$ and $d$ are the extremes of the proportion. The numbers $b$ and $c$ are the means of the proportion.

## PROPERTIES OF PROPORTIONS

1. Cross product property The product of the extremes equals the product of the means.

$$
\text { If } \frac{a}{b} \ngtr \frac{c}{d} \text {, then } a d=b c .
$$

2. RECIPROCAL PROPERTY If two ratios are equal, then their reciprocals are also equal.

$$
\text { If } \frac{a}{b} \neq \frac{c}{d} \text {, then } \frac{b}{a} \neq \frac{d}{c} \text {. }
$$

## Example 5: Solving Proportions

a. $\frac{4}{x} \neq \frac{5}{7}$
$5-x=4.7$

$$
\frac{5 x}{5}=\frac{28}{5}
$$

$$
x=5.6
$$



## Example 6: Solving a Proportion

Painting: The photo shows Bev Doolittle’s paint Music in the Wind. Her actual painting is 12 inches high. How wide is it?


$$
\begin{aligned}
& \frac{\omega}{4.375} \ll=\frac{12}{1.25} \\
& \frac{1.25 w}{1.25}=\frac{52.5}{1.25} \rightarrow \omega=42 \mathrm{n} .
\end{aligned}
$$

Example 7: Solving a Proportion

Estimate the length of the hidden flute in Rev Doolittle's actual painting.
(Note: in the photo, the flute is $17 / 8$ inches long)

$$
\begin{array}{r}
\frac{1.25}{12} \neq \frac{1.875}{x} \\
\frac{1.25 x}{1.25}=\frac{22.5}{1.25} \\
x=18 \mathrm{in} .
\end{array}
$$

EXIT SLIP

